

Argonne National Laboratory High Energy Physics Division Electronics Support Group

Long Range Planning Presentation

Current Projects, Capabilities, and New Initiatives

Presented By

Gary Drake Dec. 2, 2003

Group Personnel

HEP Planning Group Dec. 2, 2003

p. 2

• Gary Drake Group Leader, EE

• John Dawson Senior EE (part-time)

• Bill Haberichter Engineering Specialist

• Tim Cundiff Engineering Assistant

• Leon Reed Engineering Assistant

(part-time)

Carolyn Adams Technician

Group Specialties and Expertise

HEP Planning Group Dec. 2, 2003

p. 3

A. Design of High-Speed Data Processors

Types of Projects:

- Trigger Processors
- Communication Interface
- Data Acquisition

Implementation Techniques:

- Multi-Layer Printed Circuit Board Design
- Programmable Logic Devices (PLD)
- Field Programmable Gate Arrays (FPGA)
- Surface Mount Technology
- Ball Grid Arrays (BGA)

Group Specialties and Expertise

HEP Planning Group Dec. 2, 2003

p. 4

B. Front End Design

- Types of Projects:
 - Charge Amplifiers
 - Preamplifiers
 - Digitizers
 - Discriminators
 - Implementation of Custom Circuits (ASICS)
 - Noise Measurement,
 Analysis, & Abatement
 - HV Power Supply Design

Implementation Techniques:

- Printed Circuit Board Design
- Surface Mount Technology
- Custom Circuit Design (with FNAL)
- Bare Die or Chip on Board (COB)

Group Specialties and Expertise

HEP Planning Group Dec. 2, 2003 p. 5

C. System Design

- Types of Projects:
 - Trigger Systems (CDF, ATLAS, ZEUS)
 - ◆ Front End System for Shower Max (CDF)
 - Front End System for Calorimetry (MINOS, LC)
 - Front End System for Tracking (ZEUS)
 - » Often, These Projects Are Leadership Roles...

HEP Planning Group Dec. 2, 2003 p. 6

A. CDF Shower Max Front End Electronics - Run II

- Activities & Status
 - Project Engineer
 - Responsible for Design of Overall System
 - Coordination of Engineering Activities, ANL & FNAL
 - Sub-component Design and Production
 - *SMXR* (VME Read-Out Board) 100 Boards
 - *SQUID* (Host PCB for Front-End Custom ASIC) 5000 Boards
 - *Preamp* for Strip & Wire Chambers 12,000 SIPs
 - ◆ Status
 - Completed Production in Spring 2001 **>> Working Well to Date**
 - Currently Providing Maintenance & Support for Entire System

HEP Planning Group Dec. 2, 2003

p. 7

A. CDF Shower Max Front End Electronics (Cont.)

Gallery of Our Designs

SMXR

SQUID

CES Preamp

HEP Planning Group Dec. 2, 2003

p. 8

A. CDF Trigger Electronics – Run II

- Activities & Status
 - ◆ Isolation Trigger
 - Level 2 Trigger for Isolated Photons
 - * RECES
 - Level 2 Trigger for Shower Max
 - ◆ Status
 - Completed Production in Spring 2001
 - Currently Providing Maintenance & Support

RECES Board

HEP Planning Group Dec. 2, 2003

p. 9

C. ZEUS Straw Tube Tracker (STT) Electronics

- Design and Production of the Main Board
 - Discriminator Board for Processing Straw Tube Signals
 - ◆ Front End Board Hosts the *ASDQ*, A Custom Front End Chip Designed at PENN
 - ◆ Low-Noise, High Sensitivity (2 fC)
 - 150 Boards for Production
 - Status: Completed Spring, 2001

» High Density Layout, Low Noise Performance, Mixed Analog/Digital Circuitry

HEP Planning Group Dec. 2, 2003 p. 10

C. ZEUS Straw Tube Tracker Electronics (Cont.)

- Design of the Driver Board
 - ◆ Board for Driving Discriminated Signals~42 M from Detector to Counting Room
 - Contains 16 Driver Amplifiers
 Configured as SIPs
 - Compensates for Lossy Cable
 - ◆ 150 Boards for Production
 - Designed at ANL
 - Production and Checkout Done at Tel Aviv Univ.
 - Status: Production Completed Spring, 2001

» Novel Amplifier for Compensating Lossy Cable

HEP Planning Group Dec. 2, 2003

p. 11

D. ZEUS Cockroft-Walton Photomultiplier Base

- Design and Production of the CW PMT Base
 - ◆ PMT Base with Internal High Voltage Generation from Low Voltage DC
 - ◆ Low Power, Low-Noise, with Monitor Read Back
 - Replacement for Existing Failing Bases
 - ◆ 500 (1000) Boards for Production
 - Designed at ANL
 - ◆ Production and Checkout Done at Penn State Univ.
 - ◆ Status: Production of 500 Completed in Spring, 2001 → Working Well to Date

» Low Noise, High Density, Unique Packaging, Reliability

HEP Planning Group Dec. 2, 2003

p. 12

E. ATLAS Level 2 Trigger

• Design of the Region of Interest (ROI) Builder

- Receives Information from Level 1 Trigger,
 Forms a "Record," and Passes it to the
 Trigger Supervisor for L2 Processing
- High Speed, High Bandwidth, High Density
- ◆ Have Demonstrated Ability to Meet 100 KHz Maximum Output Trigger Rate
- ◆ Status: 1st Prototype Built, & Tested at CERN; Design of Final Prototype in Progress
- ◆ Schedule: Production ~2004

» Extensive Use of High Density Programmable Logic

HEP Planning Group Dec. 2, 2003

p. 13

F. ATLAS Communication Link

- Design of the TTC Mezzanine Card
 - Hosts TTCrx Custom Chip, Developed at CERN
 - ◆Timing and Control Information from Master Clock (TTC), Transmitted over Fiber to All Parts of Detector
 - High Speed, High Bandwidth, High Density
 - ◆ Uses Ball Grid Array (BGA) Technology
 - ◆ Status: 4 Prototypes Tested in ATLAS Tilecal Testbeam; Other Testing in Progress
 - ◆ Schedule: Evaluation in Progress...

» High Density Programmable Logic, BGA Packaging

HEP Planning Group Dec. 2, 2003 p. 14

G. ATLAS Communication Link

- Design of the Gigabit Ethernet Link-Source Card
 - ◆ Receives "S-Link" Input Data Streams
 - ◆ Buffers Data, & Re-Transmits over Gigabit Ethernet Fiber
 - ◆ Interface Between L1 & L2 Trigger Systems
 - High Speed, High Bandwidth, High Density
 - Status: Prototypes Built;
 Testing in Progress at CERN
 - ◆ Schedule: Production ~2004

» Extensive Use of High Density Programmable Logic, Complex Functionality

HEP Planning Group Dec. 2, 2003 p. 15

H. MINOS Near Detector Front End System

- Level 3 Manager for Near Detector Electronics
 - Responsible for Design of Overall System
 - Coordination of Subproject Engineering Activities
 - Design & Production Joint Effort with ANL, FNAL, & IIT

HEP Planning Group Dec. 2, 2003 p. 16

H. MINOS Near Detector Front End System (Cont.)

- Design and Production of the MASTER Module
 - High-Speed Front End Data Processor
 - 9U x 400mm VME Board
 - 100 Boards for Production
 - Checkout Performed at ANL
 - Status: Production in Progress
 - Schedule: Complete January 2004

» Extensive Use of High Density Programmable Logic, Complex Functionality

HEP Planning Group Dec. 2, 2003 p. 17

H. MINOS Near Detector Front End System (Cont.)

- Design and Production of the MINDER Module
 - Motherboard for Front End Electronics Channels
 - Host to Daughter Boards
 Containing *QIEs*, A Custom Front
 End Chip Designed at FNAL
 - 6U x 340mm VME Board
 - ◆ 700 Boards for Production
 - Checkout Performed at ANL
 - Status: Production in Progress

» High Density Programmable Logic, Mixed Analog/Digital Processing, Low Noise

HEP Planning Group Dec. 2, 2003 p. 18

H. MINOS Near Detector Front End System (Cont.)

- Design and Production of the KEEPER Module
 - Controller for Front End Crates
 - Contains Discriminators for PMT Dynodes for Triggering
 - 6U x 340mm VME Board
 - 55 Boards for Production
 - Checkout Performed at ANL
 - Status: Production in Progress
 - Schedule: Complete

» High Density Programmable Logic, Mixed Analog/Digital Processing, Low Noise

New Projects (With Funding)

HEP Planning Group Dec. 2, 2003 p. 19

A. Linear Collider

- Readout System for Hadron Calorimeter
 - Detector Technology: Resistive Plate Chambers
 - Project: Design Readout System for Prototype Detector
 - Overall Front-End Electronics & DAQ
 - Specification of Custom Integrated Circuit (Design at FNAL)
 - Coordination of Design Activities
 - Prototype Design, Development, & Testing
 - Cockroft-Walton HV
 - ◆ Design & Production Joint Effort with ANL, FNAL, U of C, & Boston University

New Projects (With Funding)

HEP Planning Group Dec. 2, 2003 p. 20

B. NUMI Off-Axis Experiment

- Readout System for Calorimeter
 - Detector Technology: Resistive Plate Chambers (Scintillator?)
 - Project: Design Readout System for Detector
 - Overall Front-End Electronics & DAQ
 - Specification of Custom Integrated Circuit (Same as LC...)
 - Coordination of Design Activities
 - Prototype Design, Development, & Testing
 - Cockroft-Walton HV
 - ◆ Design & Production Joint Effort with ANL & FNAL (and LC...)

New Projects (With Funding)

HEP Planning Group Dec. 2, 2003 p. 21

C. Veritas

- Readout System for Upgraded Telescope
 - Detector Technology: Mult-Anode PMTs
 - Project: Design Readout System for Prototype Detector
 - Evaluation of MAPMTs for Telescope
 - Overall Front-End Electronics & DAQ
 - Prototype Design, Development & Testing
 - Trigger System?

Future Projects

HEP Planning Group Dec. 2, 2003

p. 22

Projects We Are Discussing:

- Front End Electronics for *OMNIS*
- L2 Upgrade for *CDF Run IIB*
- Front End Electronics for *Reactor Neutrino Experiment*

Group Personnel Revisited

HEP Planning Group Dec. 2, 2003

p. 23

Expertise By Discipline	System Design	Digital Design	Prog. Logic Design	Analog Design	Ana/Dig PCB Design	Ground, Shield, & Noise	FE Pwr System Design	Custom IC Design	Checkout, Building, Testing	Comp. Program Support
Dawson (Engineer)	**	*	\uparrow				\(\)			
Drake (Engineer)	\rightarrow			*	\rightarrow	\rightarrow	**	(**)		
Cundiff (Eng. Asst.)					*				**	
Haberichter (Eng. Spec.)		**	*						**	
Reed (Eng. Asst.)									*	
Adams (Tech)				- Support -					*	

Manpower Projection

HEP Planning Group Dec. 2, 2003

p. 24

• FY2004:

- Support of CDF & MINOS
- Development of ROI Builder & Peripherals for ATLAS
- R&D for (Funded) LC, Veritas, & NUMI Off-Axis
- **» Sufficient Work for Entire Group + Programmer**

• FY2005:

- Support of CDF & MINOS
- Production of ROI Builder for ATLAS (?)
- Production of Electronics for LC Testbeam
- Continued R&D for Veritas, & NUMI Off-Axis (Funding?)
- » Sufficient Work for Entire Group

Manpower Projection

HEP Planning Group Dec. 2, 2003

p. 25

• Beyond FY2005:

- Support of CDF & MINOS
- Support of ROI Builder for ATLAS
- LC: What's Next?
- Veritas & NUMI Off-Axis: Do They Take Off?
- » Staffing Requirements Dependent on New Initiatives

Summary

HEP Planning Group Dec. 2, 2003

p. 26

We Are Supporting:

- CDF Shower Max Electronics
- CDF Trigger Electronics
- ZEUS STT Electronics
- ZEUS CW PMT Base

Current Active Projects:

- Production of MINOS ND Front End Electronics
- Development of ATLAS ROI Builder
- Development of ATLAS TTC Mezzanine Card & LSC

New Active Projects:

- Linear Collider HCAL
- NUMI Off-Axis FEE
- VERITAS FEE

Future Projects:

- OMNIS FEE
- CDF Run IIB L2 Trigger
- Reactor Neutrino FEE